Volume 44 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
GUO Wentao, SUN Xiyan, JI Yuanfa, JIA Qianzi. Ionospheric TEC Prediction Based on QPSO-LSTM Model (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 772-781 doi: 10.11728/cjss2024.05.2023-0143
Citation: GUO Wentao, SUN Xiyan, JI Yuanfa, JIA Qianzi. Ionospheric TEC Prediction Based on QPSO-LSTM Model (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 772-781 doi: 10.11728/cjss2024.05.2023-0143

Ionospheric TEC Prediction Based on QPSO-LSTM Model

doi: 10.11728/cjss2024.05.2023-0143 cstr: 32142.14.cjss2024.05.2023-0143
  • Received Date: 2023-12-06
  • Rev Recd Date: 2024-03-06
  • Available Online: 2024-04-02
  • For the ionospheric TEC short-term prediction of a single LSTM model, there are difficulties in parameter adjustment and performance Optimization, resulting in low prediction accuracy. Quantum Particle Swarm Optimization (QPSO) and LSTM model are combined. The quantum particle swarm optimization algorithm was used to determine the optimal solution, optimize the parameter configuration of the LSTM model, and use the model to predict the ionospheric TEC of low, middle and high latitudes 5 d in advance for three periods in 2014 and 2018, and analyze the prediction accuracy of the ionospheric TEC during the quiet period and disturbance period of geomagnetic activity. The experimental results show that when the LSTM model optimized by QPSO is used to predict TEC for 5 consecutive days, compared with the single LSTM model, the root-mean-square error of the QPSO-LSTM model is reduced by 0.34 TECU at most in low solar activity years, and the relative accuracy is increased by 2.68% at most in high solar activity years. The RMS error decreases by up to 0.68 TECU at low latitudes, while the relative accuracy increases by up to 2.36% at high latitudes. From different analysis angles, it is found that the prediction accuracy of QPSO-LSTM model is better than that of single LSTM model.

     

  • loading
  • [1]
    SUN W J, WU B Y, WU Z, et al. IONISE: an ionospheric observational network for irregularity and scintillation in East and Southeast Asia[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2020JA028055 doi: 10.1029/2020JA028055
    [2]
    LIU L B, YANG Y Y, LE H J, et al. Unexpected regional zonal structures in low latitude ionosphere call for a high longitudinal resolution of the global ionospheric maps[J]. Remote Sensing, 2022, 14(10): 2315 doi: 10.3390/rs14102315
    [3]
    REDDYBATTULA K D, NELAPUDI L S, MOSES M, et al. Ionospheric TEC forecasting over an Indian low latitude location using long short-term memory (LSTM) deep learning network[J]. Universe, 2022, 8(11): 562 doi: 10.3390/universe8110562
    [4]
    RUWALI A, KUMAR A J S, PRAKASH K B, et al. Implementation of hybrid deep learning model (LSTM-CNN) for ionospheric TEC forecasting using GPS data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1004-1008 doi: 10.1109/LGRS.2020.2992633
    [5]
    王建敏, 唐彦, 吕楠, 等. 组合模型的电离层总电子短期预报研究[J]. 测绘科学, 2022, 47(4): 34-43, 67

    WANG Jianmin, TANG Yan, LYU Nan, et al. Research on combined model in short term ionospheric total electron prediction[J]. Science of Surveying and Mapping, 2022, 47(4): 34-43, 67
    [6]
    RUGVETH V S, KHATTER K. Sensitivity analysis on Gaussian quantum-behaved particle swarm optimization control parameters[J]. Soft Computing, 2023, 27(13): 8759-8774 doi: 10.1007/s00500-023-08011-4
    [7]
    SUN J, XU W B, LIU J. Parameter selection of quantum-behaved particle swarm optimization[C]//Proceedings of the 1st International Conference on Natural Computation. Changsha: Springer, 2005: 543-552
    [8]
    SUN J, FANG W, WU X J, et al. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection[J]. Evolutionary Computation, 2012, 20(3): 349-393 doi: 10.1162/EVCO_a_00049
    [9]
    SUN J, WU W B, FENG B. A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, 2004. Singapore: IEEE, 2004
    [10]
    鲁铁定, 黄佳伟, 鲁春阳, 等. 基于EWT-ARMA的短期电离层TEC预测模型[J]. 大地测量与地球动力学, 2021, 41(4): 331-335, 341

    LU Tieding, HUANG Jiawei, LU Chunyang, et al. Short-term ionospheric TEC prediction model based on EWT-ARMA[J]. Journal of Geodesy and Geodynamics, 2021, 41(4): 331-335, 341
    [11]
    刘昂, 王宁波, 李子申, 等. 基于极大验后推估理论的全球电离层地图预报[J]. 空间科学学报, 2022, 42(6): 1089-1099 doi: 10.11728/cjss2022.06.210812085

    LIU Ang, WANG Ningbo, LI Zishen, et al. Prediction of global ionospheric map using the theory of maximum posterior estimation[J]. Chinese Journal of Space Science, 2022, 42(6): 1089-1099 doi: 10.11728/cjss2022.06.210812085
    [12]
    吴晗, 黄玲, 刘立龙, 等. 基于SSA-LSTM的短期电离层TEC组合预报模型[J]. 大地测量与地球动力学, 2022, 42(6): 626-630, 654

    WU Han, HUANG Ling, LIU Lilong, et al. Short term prediction model of ionospheric TEC based on SSA-LSTM[J]. Journal of Geodesy and Geodynamics, 2022, 42(6): 626-630, 654
    [13]
    唐丝语, 黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报[J]. 空间科学学报, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042

    TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
    [14]
    李磊, 黎竞, 杨晨. 基于KF-LSTM组合模型的短期电离层TEC预测[J]. 大地测量与地球动力学, 2023, 43(10): 1020-1025

    LI Lei, LI Jing, YANG Chen. Short-term ionospheric TEC prediction based on KF-LSTM combination model[J]. Journal of Geodesy and Geodynamics, 2023, 43(10): 1020-1025
    [15]
    NAVA B, COÏSSON P, RADICELLA S M. A new version of the NeQuick ionosphere electron density model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(15): 1856-1862 doi: 10.1016/j.jastp.2008.01.015
    [16]
    XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34
    [17]
    汤俊, 钟正宇, 李垠健, 等. 基于SSA-Elman神经网络的电离层TEC短期预报模型[J]. 大地测量与地球动力学, 2022, 42(4): 378-383

    TANG Jun, ZHONG Zhengyu, LI Yinjian, et al. Short-term prediction model of ionospheric TEC based on SSA-Elman neural network[J]. Journal of Geodesy and Geodynamics, 2022, 42(4): 378-383
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article Views(507) PDF Downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return