Citation: | GUO Wentao, SUN Xiyan, JI Yuanfa, JIA Qianzi. Ionospheric TEC Prediction Based on QPSO-LSTM Model (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 772-781 doi: 10.11728/cjss2024.05.2023-0143 |
[1] |
SUN W J, WU B Y, WU Z, et al. IONISE: an ionospheric observational network for irregularity and scintillation in East and Southeast Asia[J]. Journal of Geophysical Research: Space Physics, 2020, 125(8): e2020JA028055 doi: 10.1029/2020JA028055
|
[2] |
LIU L B, YANG Y Y, LE H J, et al. Unexpected regional zonal structures in low latitude ionosphere call for a high longitudinal resolution of the global ionospheric maps[J]. Remote Sensing, 2022, 14(10): 2315 doi: 10.3390/rs14102315
|
[3] |
REDDYBATTULA K D, NELAPUDI L S, MOSES M, et al. Ionospheric TEC forecasting over an Indian low latitude location using long short-term memory (LSTM) deep learning network[J]. Universe, 2022, 8(11): 562 doi: 10.3390/universe8110562
|
[4] |
RUWALI A, KUMAR A J S, PRAKASH K B, et al. Implementation of hybrid deep learning model (LSTM-CNN) for ionospheric TEC forecasting using GPS data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 1004-1008 doi: 10.1109/LGRS.2020.2992633
|
[5] |
王建敏, 唐彦, 吕楠, 等. 组合模型的电离层总电子短期预报研究[J]. 测绘科学, 2022, 47(4): 34-43, 67
WANG Jianmin, TANG Yan, LYU Nan, et al. Research on combined model in short term ionospheric total electron prediction[J]. Science of Surveying and Mapping, 2022, 47(4): 34-43, 67
|
[6] |
RUGVETH V S, KHATTER K. Sensitivity analysis on Gaussian quantum-behaved particle swarm optimization control parameters[J]. Soft Computing, 2023, 27(13): 8759-8774 doi: 10.1007/s00500-023-08011-4
|
[7] |
SUN J, XU W B, LIU J. Parameter selection of quantum-behaved particle swarm optimization[C]//Proceedings of the 1st International Conference on Natural Computation. Changsha: Springer, 2005: 543-552
|
[8] |
SUN J, FANG W, WU X J, et al. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection[J]. Evolutionary Computation, 2012, 20(3): 349-393 doi: 10.1162/EVCO_a_00049
|
[9] |
SUN J, WU W B, FENG B. A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of the IEEE Conference on Cybernetics and Intelligent Systems, 2004. Singapore: IEEE, 2004
|
[10] |
鲁铁定, 黄佳伟, 鲁春阳, 等. 基于EWT-ARMA的短期电离层TEC预测模型[J]. 大地测量与地球动力学, 2021, 41(4): 331-335, 341
LU Tieding, HUANG Jiawei, LU Chunyang, et al. Short-term ionospheric TEC prediction model based on EWT-ARMA[J]. Journal of Geodesy and Geodynamics, 2021, 41(4): 331-335, 341
|
[11] |
刘昂, 王宁波, 李子申, 等. 基于极大验后推估理论的全球电离层地图预报[J]. 空间科学学报, 2022, 42(6): 1089-1099 doi: 10.11728/cjss2022.06.210812085
LIU Ang, WANG Ningbo, LI Zishen, et al. Prediction of global ionospheric map using the theory of maximum posterior estimation[J]. Chinese Journal of Space Science, 2022, 42(6): 1089-1099 doi: 10.11728/cjss2022.06.210812085
|
[12] |
吴晗, 黄玲, 刘立龙, 等. 基于SSA-LSTM的短期电离层TEC组合预报模型[J]. 大地测量与地球动力学, 2022, 42(6): 626-630, 654
WU Han, HUANG Ling, LIU Lilong, et al. Short term prediction model of ionospheric TEC based on SSA-LSTM[J]. Journal of Geodesy and Geodynamics, 2022, 42(6): 626-630, 654
|
[13] |
唐丝语, 黄智. 基于因果卷积与LSTM网络的电离层总电子含量预报[J]. 空间科学学报, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
TANG Siyu, HUANG Zhi. Prediction of ionospheric total electron content based on causal convolutional and LSTM network[J]. Chinese Journal of Space Science, 2022, 42(3): 357-365 doi: 10.11728/cjss2022.03.210401042
|
[14] |
李磊, 黎竞, 杨晨. 基于KF-LSTM组合模型的短期电离层TEC预测[J]. 大地测量与地球动力学, 2023, 43(10): 1020-1025
LI Lei, LI Jing, YANG Chen. Short-term ionospheric TEC prediction based on KF-LSTM combination model[J]. Journal of Geodesy and Geodynamics, 2023, 43(10): 1020-1025
|
[15] |
NAVA B, COÏSSON P, RADICELLA S M. A new version of the NeQuick ionosphere electron density model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(15): 1856-1862 doi: 10.1016/j.jastp.2008.01.015
|
[16] |
XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34
|
[17] |
汤俊, 钟正宇, 李垠健, 等. 基于SSA-Elman神经网络的电离层TEC短期预报模型[J]. 大地测量与地球动力学, 2022, 42(4): 378-383
TANG Jun, ZHONG Zhengyu, LI Yinjian, et al. Short-term prediction model of ionospheric TEC based on SSA-Elman neural network[J]. Journal of Geodesy and Geodynamics, 2022, 42(4): 378-383
|