Citation: | ZHAO Yun, WANG Han, DONG Binbin, HAO Junbo, ZHANG Zizhuo, CHEN Shihan, YANG Chenglong, GAO Qixiang, ZHONG Xing, CHEN Maosheng. Research Progress and Fronts in Satellite-to-ground Laser Communication (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 612-628 doi: 10.11728/cjss2025.02.2024-0148 |
[1] |
FRIED D L. Scintillation of a ground-to-space laser illuminator[J]. Journal of the Optical Society of America, 1967, 57(8): 980-983 doi: 10.1364/JOSA.57.000980
|
[2] |
MINOTT P O. Scintillation in an earth-to-space propagation path[J]. Journal of the Optical Society of America, 1972, 62(7): 885-888
|
[3] |
CZICHY R H, SODNIK Z, FURCH B. Design of an optical ground station for in-orbit checkout of free-space laser communication payloads[C]//Proceedings of the Free-Space Laser Communication Technologies VII. San Jose: SPIE, 1995
|
[4] |
WILSON K E. An Overview of the GOLD Experiment Between the ETS-6 Satellite and the Table Mountain Facility[R]. The Telecommunications and Data Acquisition Report, 1996
|
[5] |
BISWAS A, OAIDA B, ANDREWS K S, et al. Optical payload for lasercomm science (OPALS) link validation during operations from the ISS[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVII. San Francisco: SPIE, 2015
|
[6] |
WRIGHT M W, KOVALIK J, MORRIS J, et al. LEO-to-ground optical communications link using adaptive optics correction on the OPALS downlink[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII. San Francisco: SPIE, 2016
|
[7] |
ROBERTS W T, ANTSOS D, CROONQUIST A, et al. Overview of ground station 1 of the NASA space communications and navigation program[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII. San Francisco: SPIE, 2016
|
[8] |
ROBERTS JR L C, BURRUSS R, FREGOSO S, et al. The adaptive optics and transmit system for NASA's laser communications relay demonstration project[C]//Proceedings of the Laser Communication and Propagation through the Atmosphere and Oceans. San Diego: SPIE, 2016
|
[9] |
WILSON K E, ROBERTS JR L C. Recent developments in adaptive optics for the LCRD optical ground station at table mountain[C]//Proceedings of the International Conference on Space Optical Systems and Applications. Kobe, Japan, 2014
|
[10] |
ISRAEL D J, EDWARDS B L, BUTLER R L, et al. Early results from NASA’s laser communications relay demonstration (LCRD) experiment program[C]//Proceedings of the Free-Space Laser Communications XXXV. San Francisco: SPIE, 2023
|
[11] |
ROBERTS L C, MEEKER S R, TESCH J, et al. Performance of the adaptive optics system for laser communications relay demonstration’s ground station 1[J]. Applied Optics, 2023, 62(23): G26-G36
|
[12] |
ISRAEL D J, EDWARDS B L, BUTLER R L, et al. NASA's Laser communications relay demonstration (LCRD) experiment program: characterization and initial operations[C]//Proceedings of the Free-Space Laser Communications XXXVI. San Francisco: SPIE, 2024
|
[13] |
ROBINSON B S, BOROSON D M, SCHIELER C M, et al. TeraByte InfraRed delivery (TBIRD): a demonstration of large-volume direct-to-earth data transfer from low-earth orbit[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXX. San Francisco: SPIE, 2018
|
[14] |
RIESING K M, SCHIELER C M, BROWN J J, et al. Pointing, acquisition, and tracking for the TBIRD CubeSat mission: system design and pre-flight results[C]//Proceedings of the Free-Space Laser Communications XXXIV. San Francisco: SPIE, 2022
|
[15] |
SCHIELER C M, RIESING K M, HORVATH A J, et al. 200 Gbps TBIRD CubeSat downlink: pre-flight test results[C]//Proceedings of the Free-Space Laser Communications XXXIV. San Francisco: SPIE, 2022
|
[16] |
SCHIELER C M, RIESING K M, BILYEU B C, et al. TBIRD 200-Gbps CubeSat Downlink: system architecture and mission plan[C]//Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS). Kyoto City, Japan: IEEE, 2022
|
[17] |
PIAZZOLLA S, ROBERTS W T, KOVALIK J, et al. Ground station for terabyte infrared delivery (TBIRD)[C]//Proceedings of the Free-Space Laser Communications XXXV. San Francisco: SPIE, 2023
|
[18] |
SCHIELER C M, RIESING K M, BILYEU B C, et al. On-orbit demonstration of 200-Gbps laser communication downlink from the TBIRD CubeSat[C]//Proceedings of the Free-Space Laser Communications XXXV. San Francisco: SPIE, 2023
|
[19] |
RIESING K, SCHIELER C, BILYEU B, et al. Operations and results from the 200 Gbps TBIRD laser communication mission[C]//Proceedings of the 37th Annual Small Satellite Conference. Logan: Utah State University, 2023
|
[20] |
BUCHHEIM K. OPTEL-µ: a compact system for optical downlink from LEO satellites[C]//SpaceOps 2012 Conference. Stockholm, Sweden: American Institute of Aeronautics and Astronautics, 2012
|
[21] |
BAISTER G, GREGER R, BACHER M, et al. OPTEL-μ LEO to ground laser communications terminal: flight design and status of the EQM development project[C]//Proceedings of the International Conference on Space Optics—ICSO 2016. Biarritz: SPIE, 2017
|
[22] |
SAUCKE K, SEITER C, HEINE F, et al. The Tesat transportable adaptive optical ground station[C]//Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII. San Francisco: SPIE, 2016
|
[23] |
FISCHER E, KUDIELKA K, BERKEFELD T, et al. Adaptive optics upgrades for laser communications to the ESA optical ground station[C]//Proceedings of the International Conference on Space Optics—ICSO 2020. SPIE, 2021
|
[24] |
KUDIELKA K, FISCHER E, BERKEFELD T, et al. Optical feeder link demonstrations between the ESA optical ground station and alphasat[C]//Proceedings of the 2023 IEEE International Conference on Space Optical Systems and Applications (ICSOS). Vancouver: IEEE, 2023
|
[25] |
GIGGENBACH D, FUCHS C, SCHMIDT C, et al. Downlink communication experiments with OSIRISv1 laser terminal onboard flying laptop satellite[J]. Applied Optics, 2022, 61(8): 1938-1946 doi: 10.1364/AO.446771
|
[26] |
张庆君, 张健, 张欢, 等. 海洋二号卫星工程研制及在轨运行简介[J]. 中国工程科学, 2013, 15(7): 12-18 doi: 10.3969/j.issn.1009-1742.2013.07.002
ZHANG Qingjun, ZHANG Jian, ZHANG Huan, et al. The study of HY-2A satellite engineering development and in-orbit movement[J]. Strategic Study of CAE, 2013, 15(7): 12-18 doi: 10.3969/j.issn.1009-1742.2013.07.002
|
[27] |
CHEN W B, SUN J F, HOU X, et al. 5.12 Gbps optical communication link between LEO satellite and ground station[C]//Proceedings of the 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS). Naha: IEEE, 2017
|
[28] |
崔岳, 唐勇. 实践二十号卫星在轨核心试验全部完成[J]. 国际, 2020(7): 38-41 doi: 10.3969/j.issn.1009-2366.2020.07.010
CUI Yue, TANG Yong. The in-orbit core test of Shishi No. 20 satellite has been completed[J]. Space International, 2020(7): 38-41 doi: 10.3969/j.issn.1009-2366.2020.07.010
|
[29] |
EPPLE B. Using a GPS-aided inertial system for coarse-pointing of free-space optical communication terminals[C]//Proceedings of the Free-Space Laser Communications VI. San Diego: SPIE, 2006
|
[30] |
赵雪, 母一宁, 姜非欧, 等. GPS/INS技术在静态激光通信初始捕获中的应用[J]. 激光与红外, 2012, 42(5): 505-509 doi: 10.3969/j.issn.1001-5078.2012.05.006
ZHAO Xue, MU Yining, JIANG Feiou, et al. Application of GPS/INS technology in the initial capture of static laser communication[J]. Laser :Times New Roman;">& Infrared, 2012, 42(5): 505-509 doi: 10.3969/j.issn.1001-5078.2012.05.006
|
[31] |
侯霞, 刘哲绮, 常亦迪, 等. 卫星激光通信技术发展现状与趋势分析[J]. 中国激光, 2024, 51(11): 1101013
HOU Xia, LIU Zheqi, CHANG Yidi, et al. Analysis on development status and trend of space laser communication technology[J]. Chinese Journal of Lasers, 2024, 51(11): 1101013
|
[32] |
SCHEINFEILD M, KOPEIKA N S, SHLOMI A. Acquisition time calculation and influence of vibrations for microsatellite laser communication in space[C]//Proceedings of the Acquisition, Tracking, and Pointing XV. Orlando: SPIE, 2001
|
[33] |
范新坤. 空间激光通信系统中激光光斑精密判读技术[D]. 长春: 长春理工大学, 2018
FAN Xinkun. The Precision Detection Technology of Laser Spot in Space Laser Communication System[D]. Changchun: Changchun University of Science and Technology, 2018
|
[34] |
许源. 基于Zynq的无线光通信平台目标对准跟踪技术研究[D]. 长春: 长春理工大学, 2023
XU Yuan. Research on Target Alignment and Tracking Technology of Infinite Optical Communication Platform Based on Zyn[D]. Changchun: Changchun University of Science and Technology, 2023
|
[35] |
吕春雷, 佟首峰. 高带宽高跟踪精度复合轴APT精跟踪系统的实现[J]. 大连海事大学学报, 2012, 38(3): 96-100
LÜ Chunlei, TONG Shoufeng. Realization of high bandwidth and high tracking accuracy fine tracking assembly of compound-axis[J]. Journal of Dalian Maritime University, 2012, 38(3): 96-100
|
[36] |
吴峥. 空间激光通信无信标捕跟成像系统研究[D]. 长春: 长春理工大学, 2021
WU Zheng. Research on Imaging System of Beaconless Acquisition and Tracking for Space Laser Communication System[D]. Changchun: Changchun University of Science and Technology, 2021
|
[37] |
王俊尧. 空间多节点间激光通信组网APT技术研究[D]. 长春: 长春理工大学, 2023
WANG Junyao. Research on APT Technology for Space Multi-Node Laser Communication Networking[D]. Changchun: Changchun University of Science and Technology, 2023
|
[38] |
高建秋, 孙建锋, 李佳蔚, 等. 基于激光章动的空间光到单模光纤的耦合方法[J]. 中国激光, 2016, 43(8): 801001 doi: 10.3788/CJL201643.0801001
GAO Jianqiu, SUN Jianfeng, LI Jiawei, et al. Coupling method for making space light into single-mode fiber based on laser nutation[J]. Chinese Journal of Lasers, 2016, 43(8): 801001 doi: 10.3788/CJL201643.0801001
|
[39] |
郑燕红, 王岩, 陈兴林. 卫星光通信APT控制系统H∞设计[J]. 航空学报, 2008, 29(6): 1619-1625 doi: 10.3321/j.issn:1000-6893.2008.06.033
ZHENG Yanhong, WANG Yan, CHEN Xinglin. H∞ control applied for APT system of inter-satellite laser communications[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1619-1625 doi: 10.3321/j.issn:1000-6893.2008.06.033
|
[40] |
韩立强, 王祁, 信太克归, 等. 空间光通信ATP系统粗跟踪平台的混合自适应控制[J]. 燕山大学学报, 2009, 33(5): 377-381,404 doi: 10.3969/j.issn.1007-791X.2009.05.001
HAN Liqiang, WANG Qi, SHIDA K, et al. Hybrid self-adaptive control of coarse tracking platform in ATP system for space optical communication[J]. Journal of Yanshan University, 2009, 33(5): 377-381,404 doi: 10.3969/j.issn.1007-791X.2009.05.001
|
[41] |
黄海波, 艾勇, 左韬, 等. 自由空间光通信精跟踪模糊控制系统的设计[J]. 光电子 $ \cdot $激光, 2010, 21(3): 366-370
HUANG Haibo, AI Yong, ZUO Tao, et al. Design of fuzzy control system for fine tracking in free space optical communication[J]. Journal of Optoelectronics·Laser, 2010, 21(3): 366-370
|
[42] |
NAKAGAWA K, YAMAMOTO A, TOYODA M. Performance test result of LUCE (Laser utilizing communications equipment) engineering model[C]//Proceedings of the Free-Space Laser Communication Technologies XII. San Jose: SPIE, 2000
|
[43] |
ARIMOTO Y, TOYOSHIMA M, TOYODA M, et al. Preliminary Result on Laser Communication Experiment Using (ETS-VI)[C]//Proceedings of the Proceedings-SPIE the International Society for Optical Engineering. San Jose: SPIE International Society for Optical, 1995
|
[44] |
TOLKER-NIELSEN T, OPPENHAUSER G. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX[C]//Proceedings of the Free-Space Laser Communication Technologies XIV. San Jose: SPIE, 2002
|
[45] |
JONO T, TOYODA M, NAKAGAWA K, et al. Acquisition, tracking, and pointing systems of OICETS for free space laser communications[C]//Proceedings of the Acquisition, Tracking, and Pointing XIII. Orlando: SPIE, 1999
|
[46] |
SMUTNY B, LANGE R, KÄMPFNER H, et al. In-Orbit verification of optical inter-satellite communication links based on homodyne BPSK[C]//Proceedings of the Free-Space Laser Communication Technologies XX. San Jose: SPIE, 2008
|
[47] |
ANTONELLO R, BRANZ F, SANSONE F, et al. High-precision dual-stage pointing mechanism for miniature satellite laser communication terminals[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 776-785 doi: 10.1109/TIE.2020.2972452
|
[48] |
陈刚, 董作人, 耿健新, 等. 155/622 Mb/s多发射器激光通信系统[J]. 中国激光, 2004, 31(5): 583-587 doi: 10.3321/j.issn:0258-7025.2004.05.018
CHEN Gang, DONG Zuoren, GENG Jianxin, et al. 155/622 Mb/s multiple transmitter laser communication systems[J]. Chinese Journal of Lasers, 2004, 31(5): 583-587 doi: 10.3321/j.issn:0258-7025.2004.05.018
|
[49] |
佟首峰, 姜会林, 刘云清, 等. 自由空间激光通信系统APT粗跟踪伺服带宽优化设计[J]. 光电工程, 2007, 34(9): 16-20
TONG Shoufeng, JIANG Huilin, LIU Yunqing, et al. Optimum design of bandwidth for the APT coarse tracking assembly in free space laser communication[J]. Opto-Electronic Engineering, 2007, 34(9): 16-20
|
[50] |
孟立新, 赵丁选, 张立中, 等. 机载激光通信稳瞄吊舱设计与跟踪精度测试[J]. 兵工学报, 2015, 36(10): 1916-1923 doi: 10.3969/j.issn.1000-1093.2015.10.013
MENG Lixin, ZHAO Dingxuan, ZHANG Lizhong, et al. The test of tracking accuracy and design of airborne laser communication stabilized pod[J]. Acta Armamentarii, 2015, 36(10): 1916-1923 doi: 10.3969/j.issn.1000-1093.2015.10.013
|
[51] |
张元生, 仇振安, 郭帅, 等. 机载激光通信系统关键技术分析与试验验证[J]. 电光与控制, 2017, 24(10): 80-84 doi: 10.3969/j.issn.1671-637X.2017.10.012
ZHANG Yuansheng, QIU Zhen’an, GUO Shuai, et al. Key technology analysis of airborne laser communication system and its verification[J]. Electronics Optics :Times New Roman;">& Control, 2017, 24(10): 80-84 doi: 10.3969/j.issn.1671-637X.2017.10.012
|
[52] |
胡一博, 孟立新, 白杨杨, 等. 空间激光通信粗跟踪等效复合控制技术[J]. 激光与光电子学进展, 2023, 60(9): 0906004
HU Yibo, MENG Lixin, BAI Yangyang, et al. Coarse tracking equivalent compound control technology for space laser communication[J]. Laser :Times New Roman;">& Optoelectronics Progress, 2023, 60(9): 0906004
|
[53] |
JIMÉNEZ J. Laser diode reliability: crystal defects and degradation modes[J]. Comptes Rendus Physique, 2003, 4(6): 663-673 doi: 10.1016/S1631-0705(03)00097-5
|
[54] |
HORTELANO V, ANAYA J, SOUTO J, et al. Defect signatures in degraded high power laser diodes[J]. Microelectronics Reliability, 2013, 53(9/10/11): 1501-1505
|
[55] |
SHI B, PINNA S, ZHAO H W, et al. Lasing characteristics and reliability of 1550 nm laser diodes monolithically grown on silicon[J]. Physica Status Solidi (A), 2021, 218(3): 2000374
|
[56] |
ORTON J W. Reliability and degradation of semiconductor lasers and LEDs[J]. Journal of Modern Optics, 1992, 39(8): 1799-1800
|
[57] |
FUKUDA M. Historical overview and future of optoelectronics reliability for optical fiber communication systems[J]. Microelectronics Reliability, 2000, 40(1): 27-35
|
[58] |
HENDOW S, FALVEY S, NELSON B, et al. Overview of qualification protocol of fiber lasers for space applications[C]//Proceedings of the Solid State Lasers XV: Technology and Devices. San Jose: SPIE, 2006
|
[59] |
YABLON A D. Optics of Fusion Splicing[M]. Berlin: Springer, 2005
|
[60] |
BEAUVOIS G, CAUSSANEL M, LUPI J F, et al. Projet DROÏD: développement d'un dosimètre distribué à fibre optique[C]//Proceedings of the FMR2016: 7eme Journees sur les Fibres Optiques en Milieu Radiatif. 2016
|
[61] |
CHEYMOL G, LONG H, VILLARD J F, et al. High level gamma and neutron irradiation of silica optical fibers in CEA OSIRIS nuclear reactor[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 2252-2258
|
[62] |
GRISCOM D L. Fractal kinetics of radiation-induced point-defect formation and decay in amorphous insulators: application to color centers in silica-based optical fibers[J]. Physical Review B, 2001, 64(17): 174201
|
[63] |
REMY L, CHEYMOL G, GUSAROV A, et al. Compaction in optical fibres and fibre bragg gratings under nuclear reactor high neutron and gamma fluence[J]. IEEE Transactions on Nuclear Science, 2016, 63(4): 2317-2322 doi: 10.1109/TNS.2016.2570948
|
[64] |
KAZAURA K, OMAE K, SUZUKI T, et al. Enhancing performance of next generation FSO communication systems using soft computing based predictions[J]. Optics Express, 2006, 14(12): 4958-4968 doi: 10.1364/OE.14.004958
|
[65] |
WANG Y K, XU H Y, LI D Y, et al. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence[J]. Scientific Reports, 2018, 8(1): 1124 doi: 10.1038/s41598-018-19559-9
|
[66] |
JAHID A, ALSHARIF M H, HALL T J. A contemporary survey on free space optical communication: potentials, technical challenges, recent advances and research direction[J]. Journal of Network and Computer Applications, 2022, 200: 103311 doi: 10.1016/j.jnca.2021.103311
|
[67] |
LI H W, HUANG Y M, WANG Q, et al. Performance analysis of satellite-to-ground coherent optical communication system with aperture averaging[J]. Applied Sciences, 2018, 8(12): 2496 doi: 10.3390/app8122496
|
[68] |
GEISLER D J, YARNALL T M, STEVENS M L, et al. Multi-aperture digital coherent combining for free-space optical communication receivers[J]. Optics Express, 2016, 24(12): 12661-12671 doi: 10.1364/OE.24.012661
|
[69] |
SUN J, HUANG P M, YAO Z S, et al. Adaptive digital combining for coherent free space optical communications with spatial diversity reception[J]. Optics Communications, 2019, 444: 32-38
|
[70] |
WAINRIGHT E, REFAI H H, SLUSS JR J J. Wavelength diversity in free-space optics to alleviate fog effects[C]//Proceedings of the Free-Space Laser Communication Technologies XVII. San Jose: SPIE, 2005
|
[71] |
HAMPSON K M, TURCOTTE R, MILLER D T, et al. Adaptive optics for high-resolution imaging[J]. Nature Reviews Methods Primers, 2021, 1(1): 68 doi: 10.1038/s43586-021-00066-7
|
[72] |
FÉTICK R J L, MUGNIER L M, FUSCO T, et al. Blind deconvolution in astronomy with adaptive optics: the parametric marginal approach[J]. Monthly Notices of the Royal Astronomical Society, 2020, 496(4): 4209-4220
|
[73] |
JIANG L, DAI Z S, YU X, et al. Experimental demonstration of a single-mode fiber coupling over a 1 km urban path with adaptive optics[J]. Journal of Russian Laser Research, 2021, 42(3): 363-370
|
[74] |
JIAN H, KE D, CHAO L, et al. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication[J]. Optics Express, 2014, 22(13): 16000-16007 doi: 10.1364/OE.22.016000
|
[75] |
ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185
|
[76] |
WANG J. Twisted optical communications using orbital angular momentum[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(3): 34201
|
[77] |
WANG J, LIU J, LI S H, et al. Orbital angular momentum and beyond in free-space optical communications[J]. Nanophotonics, 2022, 11(4): 645-680
|
[78] |
REN Y X, XIE G D, HUANG H, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 2014, 39(10): 2845-2848
|
[79] |
HUANG H, CAO Y W, XIE G D, et al. Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization[J]. Optics Letters, 2014, 39(15): 4360-4363 doi: 10.1364/OL.39.004360
|
[80] |
RUCHI, SENTHILKUMARAN R P, PAL S K. Phase singularities to polarization singularities[J]. International Journal of Optics, 2020, 2020(1): 2812803
|
[81] |
SHEN Y, ROSALES-GUZMÁN C. Nonseparable states of light: from quantum to classical[J]. Laser :Times New Roman;">& Photonics Reviews, 2022, 16(7): 2100533
|
[82] |
张建强, 翟焱望, 付时尧, 等. 径向偏振矢量光束在大气湍流下的传输分析[J]. 光学学报, 2020, 40(11): 1101001 doi: 10.3788/AOS202040.1101001
ZHANG Jianqiang, ZHAI Yanwang, FU Shiyao, et al. Propagation properties of radially-polarized vector beams under a turbulent atmosphere[J]. Acta Optica Sinica, 2020, 40(11): 1101001 doi: 10.3788/AOS202040.1101001
|
[83] |
ZHU Z Y, JANASIK M, FYFFE A, et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams[J]. Nature Communications, 2021, 12(1): 1666 doi: 10.1038/s41467-021-21793-1
|
[84] |
YU Y, XU M F, PU M B, et al. Demonstration of 120 Gbit/s turbulence-resilient coherent optical communication employing cylindrical vector beam multiplexing[J]. Optics Express, 2023, 31(25): 42165-42175 doi: 10.1364/OE.506613
|
[85] |
ZHANG Z, LIANG X L, GOUTSOULAS M, et al. Robust propagation of pin-like optical beam through atmospheric turbulence[J]. APL Photonics, 2019, 4(7): 076103 doi: 10.1063/1.5095996
|
[86] |
HU N Z, ZHOU H B, ZHANG R Z, et al. Experimental demonstration of a “Pin-Like” low-divergence beam in a 1-Gbit/s OOK FSO link using a limited-size receiver aperture at various propagation distances[J]. Optics Letters, 2022, 47(16): 4215-4218 doi: 10.1364/OL.467681
|
[87] |
XU Y, LAN B, LIU C, et al. Self-focusing pin-like optical vortex beams resist atmospheric turbulence propagation for the space optical communication[C]//Proceedings of the 3rd International Conference on Laser, Optics, and Optoelectronic Technology (LOPET 2023). Kunming: SPIE, 2023
|