Citation: | ZHAO Yang, HAN Cheng. High Performance Fibers-based Space Structure and Manufacturing Materials (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 556-567 doi: 10.11728/cjss2025.02.2024-0154 |
[1] |
嫦娥六号完成采样上升器从月背起飞进入预定环月轨道[N/OL](2024-06-04). https://www.cnsa.gov.cn/n6758823/n6758838/c10543020/content.html
Chang 6 complete sampling ascenders from month back into the rings on take-off track (2024-06-04) [N/OL]. https://www.cnsa.gov.cn/n6758823/n6758838/c10543020/content.html
|
[2] |
LI, GUO, FU F, et al. Triboelectric basalt textiles efficiently operating within an ultrawide temperature range[J]. Advanced Materials, 2024, 36(28): 2401359 doi: 10.1002/adma.202401359
|
[3] |
LI, HU H, YANG, et al. Nature of the lunar far-side samples returned by the Chang’E-6 mission[J]. National Science Review, 2024, 11(11): nwae328 doi: 10.1093/nsr/nwae328
|
[4] |
马鹏程, 郭泽世, 苏秀中, 等. 月壤纤维材料研究进展与展望[J]. 深空探测学报, 2023, 10(5): 532-543
MA Pengcheng, GUO Zeshi, SU Xiuzhong, et al. Progress and perspect of lunar fiber materials[J]. Journal of Deep Space Exploration, 2023, 10(5): 532-543
|
[5] |
邢丹, 葸雄宇, 郭泽世, 等. 模拟月壤制备连续纤维的可行性研究[J]. 中国科学: 技术科学, 2020, 50(12): 1625-1633
XING Dan, XI Xiongyu, GUO Zeshi, et al. Study on the feasibility of preparing a continuous fibre using lunar soil simulant[J]. Science in China: Technical Sciences, 2020, 50(12): 1625-1633
|
[6] |
MA X F, LI T J, MA J Y, et al. Recent advances in space-deployable structures in China[J]. Engineering, 2022, 17(10): 207-219
|
[7] |
WANG B, ZHU J C, ZHONG S C, et al. Space deployable mechanics: a review of structures and smart driving[J]. Materials :Times New Roman;">& Design, 2024, 237: 112557
|
[8] |
MA X F, AN N, CONG Q, et al. Design, modeling, and manufacturing of high strain composites for space deployable structures[J]. Communications Engineering, 2024, 3(1): 78 doi: 10.1038/s44172-024-00223-2
|
[9] |
冷劲松, 兰鑫, 刘彦菊, 等. 形状记忆聚合物复合材料及其在空间可展开结构中的应用[J]. 宇航学报, 2010, 31(4): 950-956 doi: 10.3873/j.issn.1000-1328.2010.04.002
LENG Jinsong, LAN Xin, LIU Yanju, et al. Shape memory polymer composites and their applications in space deployable structures[J]. Journal of Astronautics, 2010, 31(4): 950-956 doi: 10.3873/j.issn.1000-1328.2010.04.002
|
[10] |
贾文文, 濮海玲, 刘颖, 等. 刚性基体高应变复合材料在空间可展结构中的应用及发展[J]. 宇航材料工艺, 2023, 53(2): 14-21 doi: 10.12044/j.issn.1007-2330.2023.02.003
JIA Wenwen, PU Hailing, LIU Ying, et al. Application and development of stiff matrix high strain composites in deployable space structures[J]. Aerospace Materials :Times New Roman;">& Technology, 2023, 53(2): 14-21 doi: 10.12044/j.issn.1007-2330.2023.02.003
|
[11] |
SVOTINA V V. Spacecraft protection against man-made and natural space debris particles[J]. Acta Astronautica, 2024, 225: 538-555 doi: 10.1016/j.actaastro.2024.09.053
|
[12] |
CHEN Y, TANG Q Y, HE Q G, et al. Review on hypervelocity impact of advanced space debris protection shields[J]. Thin-Walled Structures, 2024, 200: 111874 doi: 10.1016/j.tws.2024.111874
|
[13] |
Christiansen E L, Kerr J H. Flexible and deployable meteoroid/debris shielding for spacecraft[J]. International Journal of Impact Engineering, 1999, 23(1): 125-136 doi: 10.1016/S0734-743X(99)00068-8
|
[14] |
PAI A, DIVAKARAN R, ANAND S, et al. Advances in the Whipple shield design and development: a brief review[J]. Journal of Dynamic Behavior of Materials, 2022, 8(1): 20-38 doi: 10.1007/s40870-021-00314-7
|
[15] |
韩增尧, 庞宝君. 空间碎片防护研究最新进展[J]. 航天器环境工程, 2012, 29(4): 369-378 doi: 10.3969/j.issn.1673-1379.2012.04.004
HAN Zengyao, PANG Baojun. Review of recent development of space debris protection research[J]. Spacecraft Environment Engineering, 2012, 29(4): 369-378 doi: 10.3969/j.issn.1673-1379.2012.04.004
|
[16] |
苟海涛, 王应德, 闫军, 等. 一种高性能复合织物填充防护结构撞击极限研究和防护机理分析[C]//武汉: 中国空间科学学会空间材料专业委员会, 2012
GOU Haitao, WANG Yingde, YAN Jun, et al. Experimental study of hypervelocity impact on an advanced composite Fibric stuffed Whipple shield[C]//Wuhan: the Space Materials Committee, Chinese Society of Space Research, 2012
|
[17] |
WU N, LIU S K, ZHANG X S, et al. Progress on space materials science in China: debris shielding fibrous materials and high specific energy lithium sulfur batteries[J]. Chinese Journal of Space Science, 2022, 42(4): 803-811 doi: 10.11728/cjss2022.04.yg24
|
[18] |
BAI Y X, YUE H J, WANG J, et al. Super-durable ultralong carbon nanotubes[J]. Science, 2020, 369(6507): 1104-1106 doi: 10.1126/science.aay5220
|
[19] |
ZHANG X S, LEI X D, JIA X Z, et al. Carbon nanotube fibers with dynamic strength up to 14 GPa[J]. Science, 2024, 384(6702): 1318-1323 doi: 10.1126/science.adj1082
|
[20] |
SHAN M H, GUO J, GILL E. Review and comparison of active space debris capturing and removal methods[J]. Progress in Aerospace Science, 2016, 80: 18-32 doi: 10.1016/j.paerosci.2015.11.001
|
[21] |
SVOTINA V V. Spacecraft protection against man-made and natural space debris particles[J]. Acta Astronautica, 2024, 225: 538-555 doi: 10.1016/j.actaastro.2024.09.053
|
[22] |
JOHNSON N L. Debris removal: an opportunity for cooperative research[C]//Proceedings of Space Situational Awareness Conference. Washington: NASA, 2007
|
[23] |
TANG C, DENG Y Q, BAI Z F, et al. Dynamics analysis of space netted pocket system capturing non-cooperative target[J]. Applied Sciences, 2023, 13(18): 10377 doi: 10.3390/app131810377
|
[24] |
BISCHOF B, KERSTEIN L, STARKE J, et al. ROGER-robotic geostationary orbit restorer[C]//54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Bremen, Germany: IAC, 2003
|
[25] |
FORSHAW J L, AGLIETTI G S, FELLOWES S, et al. The active space debris removal mission RemoveDebris. Part 1: from concept to launch[J]. Acta Astronautica, 2020, 168: 293-309 doi: 10.1016/j.actaastro.2019.09.002
|
[26] |
AGLIETTI G S, TAYLOR B, FELLOWES S, et al. The active space debris removal mission RemoveDebris. Part 2: in orbit operations[J]. Acta Astronautica, 2020, 168: 310-322 doi: 10.1016/j.actaastro.2019.09.001
|
[27] |
许望晶, 王立武, 唐明章, 等. 空间抓捕系统绳网的设计与研制[J]. 航天器工程, 2021, 30(2): 54-59 doi: 10.3969/j.issn.1673-8748.2021.02.008
XU Wangjing, WANG Liwu, TANG Mingzhang, et al. Design and development of space net for capture system[J]. Spacecraft Engineering, 2021, 30(2): 54-59 doi: 10.3969/j.issn.1673-8748.2021.02.008
|
[28] |
BENVENUTO R, CARTA R. Active debris removal system based on tethered-nets: experimental results[C]//9th Pegasus-AIAA Aerospace Student Conference. Milano, Italy: AIAA, 2013
|
[29] |
姜生元, 沈毅, 吴湘, 等. 月面广义资源探测及其原位利用技术构想[J]. 深空探测学报, 2015, 2(4): 291-301
JIANG Shengyuan, SHEN Yi, WU Xiang, et al. Technical schemes of investigation and in-situ utilization for lunar surface generalized resources[J]. Journal of Deep Space Exploration, 2015, 2(4): 291-301
|
[30] |
刘琛, 李勇, 周文, 等. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 22050122 doi: 10.11896/cldb.22050122
LIU C, LI Y, ZHOU W, et al. In-situ forming technology of lunar/martian soil simulant[J]. Materials Reports, 2022, 36(22): 22050122 doi: 10.11896/cldb.22050122
|
[31] |
ZHAO H, MENG L, LI S Y, et al. Development of lunar regolith composite and structure via laser-assisted sintering[J]. Frontiers of Mechanical Engineering, 2022, 17(1): 6-18 doi: 10.1007/s11465-021-0662-2
|
[32] |
LEACH N. 3D printing in space[J]. Architectural Design, 2014, 84: 108-113
|
[33] |
GHIDINI T, GRASSO M, GUMPINGER J, et al. Additive manufacturing in the new space economy: current achievements and future perspectives[J]. Progress in Aerospace Sciences, 2023, 142: 100959 doi: 10.1016/j.paerosci.2023.100959
|
[34] |
ZHOU C, GAO Y Y, ZHOU Y, et al. Properties and characteristics of regolith-based materials for extraterrestrial construction[J]. Engineering, 2024, 37(6): 159-181
|
[35] |
吴灵芝, 尹海清, 张聪, 等. 增材制造月壤原位成形技术的研究现状[J]. 矿产综合利用, 2023(6): 99-107 doi: 10.3969/j.issn.1000-6532.2023.06.015
WU Lingzhi, YIN Haiqing, ZHANG Cong, et al. Research status of additive manufacturing lunar in-situ forming technology[J]. Multipurpose Utilization of Mineral Resources, 2023(6): 99-107 doi: 10.3969/j.issn.1000-6532.2023.06.015
|
[36] |
LIU M, TANG W Z, DUAN W Y, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International, 2019, 45(5): 5829-5836 doi: 10.1016/j.ceramint.2018.12.049
|
[37] |
GOULAS A, FRIEL R J. 3D printing with moondust[J]. Rapid Prototyping Journal, 2016, 22(6): 864-870 doi: 10.1108/RPJ-02-2015-0022
|
[38] |
GOULAS A, BINNER J G P, HARRIS R A, et al. Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing[J]. Applied Materials Today, 2017, 6: 54-61 doi: 10.1016/j.apmt.2016.11.004
|
[39] |
李雯, 徐可宁, 黄勇, 等. 基于SLM的模拟月壤原位成形技术[J]. 北京航空航天大学学报, 2019, 45(10): 1931-1937
LI Wen, XU Kening, HUANG Yong, et al. In-situ forming of lunar regolith simulant via selective laser melting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1931-1937
|
[40] |
MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263 doi: 10.1016/j.compstruct.2019.02.002
|
[41] |
GUO Z S, XING D, XI X Y, et al. Production of Fibres from lunar soil: feasibility, applicability and future perspectives[J]. Advanced Fiber Materials, 2022, 4(5): 923-937 doi: 10.1007/s42765-022-00156-5
|
[42] |
HO D, SOBON L E. Extraterrestrial Fiberglass Production Using Solar Energy[R]. NASA, 1979: 225-232
|
[43] |
WANG H W, ZENG C, WANG C, et al. Fibration of powdery materials[J]. Nature Materials, 2024, 23(5): 596-603 doi: 10.1038/s41563-024-01821-3
|