Citation: | WEI Dongping, SUN Lianwen, YANG Xiao. Applications of Microfluidic Chips in Space Life Sciences (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 477-492 doi: 10.11728/cjss2025.02.2024-0155 |
[1] |
WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373 doi: 10.1038/nature05058
|
[2] |
EL-ALI J, SORGER P K, JENSEN K F. Cells on chips[J]. Nature, 2006, 442(7101): 403-411 doi: 10.1038/nature05063
|
[3] |
BAISDEN D L, BEVEN G E, CAMPBELL M R, et al. Human health and performance for long-duration spaceflight[J]. Aviation, Space, and Environmental Medicine, 2008, 79(6): 629-635 doi: 10.3357/ASEM.2314.2008
|
[4] |
BASNER M, DINGES D F, MOLLICONE D J, et al. Psychological and behavioral changes during confinement in a 520-day simulated interplanetary mission to Mars[J]. PLoS One, 2014, 9(3): e93298 doi: 10.1371/journal.pone.0093298
|
[5] |
MATSUSAKI M, CASE C P, AKASHI M. Three-dimensional cell culture technique and pathophysiology[J]. Advanced Drug Delivery Reviews, 2014, 74: 95-103 doi: 10.1016/j.addr.2014.01.003
|
[6] |
KRAKOS A. Lab-on-chip technologies for space research-current trends and prospects[J]. Microchimica Acta, 2024, 191(1): 31 doi: 10.1007/s00604-023-06084-4
|
[7] |
MANZ A, GRABER N, WIDMER H M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing[J]. Sensors and Actuators B: Chemical, 1990, 1(1/2/3/4/5/6): 244-248
|
[8] |
JED HARRISON D, FLURI K, SEILER K, et al. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip[J]. Science, 1993, 261(5123): 895-897 doi: 10.1126/science.261.5123.895
|
[9] |
CHRISTEN J B, ANDREOU A G. Design, fabrication, and testing of a hybrid CMOS/PDMS microsystem for cell culture and incubation[J]. IEEE Transactions on Biomedical Circuits and Systems, 2007, 1(1): 3-18 doi: 10.1109/TBCAS.2007.893189
|
[10] |
VAN DEN DRIESCHE S, LUCKLUM F, BUNGE F, et al. 3D printing solutions for microfluidic chip-to-world connections[J]. Micromachines, 2018, 9(2): 71 doi: 10.3390/mi9020071
|
[11] |
AU A K, LAI H, UTELA B R, et al. Microvalves and micropumps for BioMEMS[J]. Micromachines, 2011, 2(2): 179-220 doi: 10.3390/mi2020179
|
[12] |
刘林波, 蒋卓, 申旋旋, 等. 微流控系统中微泵和微阀的研究与挑战[J]. 食品与机械, 2024, 40(2): 9-20,27
LIU Linbo, JIANG Zhuo, SHEN Xuanxuan, et al. Research and challenges of micropumps and microvalves in microfluidic systems[J]. Food :Times New Roman;">& Machinery, 2024, 40(2): 9-20,27
|
[13] |
TIAN C, TU Q, LIU W M, et al. Recent advances in microfluidic technologies for organ-on-a-chip[J]. TrAC Trends in Analytical Chemistry, 2019, 117: 146-156 doi: 10.1016/j.trac.2019.06.005
|
[14] |
YOUNG E W K, BEEBE D J. Fundamentals of microfluidic cell culture in controlled microenvironments[J]. Chemical Society Reviews, 2010, 39(3): 1036-1048 doi: 10.1039/b909900j
|
[15] |
刘翠, 杨书程, 李民, 等. 药物筛选新技术及其应用进展[J]. 分析测试学报, 2015, 34(11): 1324-1330 doi: 10.3969/j.issn.1004-4957.2015.11.020
LIU Cui, YANG Shucheng, LI Min, et al. Drug screening new technologies and their applications[J]. Journal of Instrumental Analysis, 2015, 34(11): 1324-1330 doi: 10.3969/j.issn.1004-4957.2015.11.020
|
[16] |
CARD A, CALDWELL C, MIN H, et al. High-throughput biochemical kinase selectivity assays: panel development and screening applications[J]. Journal of Biomolecular Screening, 2009, 14(1): 31-42 doi: 10.1177/1087057108326663
|
[17] |
DE SANTIS R, CIAMMARUCONI A, FAGGIONI G, et al. High throughput MLVA-16 typing for Brucella based on the microfluidics technology[J]. BMC Microbiology, 2011, 11(1): 60 doi: 10.1186/1471-2180-11-60
|
[18] |
TANG Q Q, LI X Y, LAI C, et al. Fabrication of a hydroxyapatite-PDMS microfluidic chip for bone-related cell culture and drug screening[J]. Bioactive Materials, 2021, 6(1): 169-178 doi: 10.1016/j.bioactmat.2020.07.016
|
[19] |
WONG A H H, LI H R, JIA Y W, et al. Drug screening of cancer cell lines and human primary tumors using droplet microfluidics[J]. Scientific Reports, 2017, 7(1): 9109 doi: 10.1038/s41598-017-08831-z
|
[20] |
LEE M Y, KUMAR R A, SUKUMARAN S M, et al. Three-dimensional cellular microarray for high-throughput toxicology assays[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(1): 59-63
|
[21] |
ENGLERT D L, MANSON M D, JAYARAMAN A. Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients[J]. Applied and Environmental Microbiology, 2009, 75(13): 4557-4564 doi: 10.1128/AEM.02952-08
|
[22] |
LIU D Y, WANG L H, ZHONG R T, et al. Parallel microfluidic networks for studying cellular response to chemical modulation[J]. Journal of Biotechnology, 2007, 131(3): 286-292 doi: 10.1016/j.jbiotec.2007.06.014
|
[23] |
SAADI W, WANG S J, LIN F, et al. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis[J]. Biomedical Microdevices, 2006, 8(2): 109-118 doi: 10.1007/s10544-006-7706-6
|
[24] |
YE N N, QIN J H, SHI W W, et al. Cell-based high content screening using an integrated microfluidic device[J]. Lab on a Chip, 2007, 7(12): 1696-1704 doi: 10.1039/b711513j
|
[25] |
KAMINSKI T S, GARSTECKI P. Controlled droplet microfluidic systems for multistep chemical and biological assays[J]. Chemical Society Reviews, 2017, 46(20): 6210-6226 doi: 10.1039/C5CS00717H
|
[26] |
梁怡萧, 潘建章, 方群. 基于微流控技术的细胞水平高通量药物筛选系统的研究进展[J]. 色谱, 2021, 39(6): 567-577 doi: 10.3724/SP.J.1123.2020.07014
LIANG Yixiao, PAN Jianzhang, FANG Qun. Research advances of high-throughput cell-based drug screening systems based on microfluidic technique[J]. Chinese Journal of Chromatography, 2021, 39(6): 567-577 doi: 10.3724/SP.J.1123.2020.07014
|
[27] |
YANG F, CHEN Z G, PAN J B, et al. An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics[J]. Biomicrofluidics, 2011, 5(2): 24115 doi: 10.1063/1.3605509
|
[28] |
李顺基, 肖育劲, 陈鹏, 等. 微流控芯片技术在体外诊断领域中的应用进展[J]. 分析科学学报, 2020, 36(5): 639-645
LI Shunji, XIAO Yujin, CHEN Peng, et al. Current advances in in-vitro diagnostic techniques based on microfluidic chip[J]. Journal of Analytical Science, 2020, 36(5): 639-645
|
[29] |
HOSOKAWA M, ASAMI M, NAKAMURA S, et al. Leukocyte counting from a small amount of whole blood using a size-controlled microcavity array[J]. Biotechnology and Bioengineering, 2012, 109(8): 2017-2024 doi: 10.1002/bit.24471
|
[30] |
WILDING P, KRICKA L J, CHENG J, et al. Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers[J]. Analytical Biochemistry, 1998, 257(2): 95-100 doi: 10.1006/abio.1997.2530
|
[31] |
KIM A S, HOEK E M V. Cake structure in dead-end membrane filtration: monte carlo simulations[J]. Environmental Engineering Science, 2002, 19(6): 373-386 doi: 10.1089/109287502320963373
|
[32] |
CHEN X, CUI D F, LIU C C, et al. Microfluidic chip for blood cell separation and collection based on crossflow filtration[J]. Sensors and Actuators B: Chemical, 2008, 130(1): 216-221 doi: 10.1016/j.snb.2007.07.126
|
[33] |
LI X, CHEN W Q, LIU G Y, et al. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes[J]. Lab on a Chip, 2014, 14(14): 2565-2575 doi: 10.1039/C4LC00350K
|
[34] |
JING W W, ZHAO W, LIU S X, et al. Microfluidic device for efficient airborne bacteria capture and enrichment[J]. Analytical Chemistry, 2013, 85(10): 5255-5262 doi: 10.1021/ac400590c
|
[35] |
JING W W, JIANG X R, ZHAO W, et al. Microfluidic platform for direct capture and analysis of airborne Mycobacterium tuberculosis[J]. Analytical Chemistry, 2014, 86(12): 5815-5821 doi: 10.1021/ac500578h
|
[36] |
CHENG Z Y, CHOI N, WANG R, et al. Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer[J]. ACS Nano, 2017, 11(5): 4926-4933 doi: 10.1021/acsnano.7b01536
|
[37] |
IM H, SHAO H L, PARK Y I, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor[J]. Nature Biotechnology, 2014, 32(5): 490-495 doi: 10.1038/nbt.2886
|
[38] |
FU Y, WANG N X, YANG A N, et al. Highly sensitive detection of protein biomarkers with organic electrochemical transistors[J]. Advanced Materials, 2017, 29(41): 1703787 doi: 10.1002/adma.201703787
|
[39] |
ZEMING K K, SALAFI T, SHIKHA S, et al. Fluorescent label-free quantitative detection of nano-sized bioparticles using a pillar array[J]. Nature Communications, 2018, 9(1): 1254 doi: 10.1038/s41467-018-03596-z
|
[40] |
KONG X Z, CHENG L, DONG Z Z, et al. Rapid Cryptococcus electroporated-lysis and sensitive detection on a miniaturized platform[J]. Biosensors and Bioelectronics, 2024, 250: 116096 doi: 10.1016/j.bios.2024.116096
|
[41] |
WANG Z Y, YAN B, NI Y L, et al. A portable, integrated microfluidics for rapid and sensitive diagnosis of Streptococcus agalactiae in resource-limited environments[J]. Biosensors and Bioelectronics, 2024, 247: 115917 doi: 10.1016/j.bios.2023.115917
|
[42] |
DONG Z Z, WANG Y S, XU G L, et al. Genetic and phenotypic profiling of single living circulating tumor cells from patients with microfluidics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(19): e2315168121
|
[43] |
YU Z L, LU S J, HUANG Y Y. Microfluidic whole genome amplification device for single cell sequencing[J]. Analytical Chemistry, 2014, 86(19): 9386-9390 doi: 10.1021/ac5032176
|
[44] |
LI Y Y, LI H, XIE Y P, et al. An integrated strategy for mass spectrometry-based multiomics analysis of single cells[J]. Analytical Chemistry, 2021, 93(42): 14059-14067 doi: 10.1021/acs.analchem.0c05209
|
[45] |
BHATIA S N, INGBER D E. Microfluidic organs-on-chips[J]. Nature Biotechnology, 2014, 32(8): 760-772 doi: 10.1038/nbt.2989
|
[46] |
VAN DER MEER A D, VAN DEN BERG A. Organs-on-chips: breaking the in vitro impasse[J]. Integrative Biology, 2012, 4(5): 461-470 doi: 10.1039/c2ib00176d
|
[47] |
INGBER D E. Human organs-on-chips for disease modelling, drug development and personalized medicine[J]. Nature Reviews Genetics, 2022, 23(8): 467-491 doi: 10.1038/s41576-022-00466-9
|
[48] |
HUH D, MATTHEWS B D, MAMMOTO A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986): 1662-1668 doi: 10.1126/science.1188302
|
[49] |
DAN HUH D. A human breathing lung-on-a-chip[J]. Annals of the American Thoracic Society, 2015, 12(S1): S42-S44
|
[50] |
ZHANG M, XU C, JIANG L, et al. A 3D human lung-on-a-chip model for nanotoxicity testing[J]. Toxicology Research, 2018, 7(6): 1048-1060 doi: 10.1039/C8TX00156A
|
[51] |
ZHU Y J, SUN L Y, WANG Y, et al. A biomimetic human lung-on-a-chip with colorful display of microphysiological breath[J]. Advanced Materials, 2022, 34(13): 2108972 doi: 10.1002/adma.202108972
|
[52] |
WITTKOWSKE C, REILLY G C, LACROIX D, et al. In vitro bone cell models: impact of fluid shear stress on bone formation[J]. Front Bioengineering and Biotechnology, 2016, 4: 87
|
[53] |
BABALIARI E, PETEKIDIS G, CHATZINIKOLAIDOU M. A precisely flow-controlled microfluidic system for enhanced pre-osteoblastic cell response for bone tissue engineering[J]. Bioengineering (Basel), 2018, 5(3): 66 doi: 10.3390/bioengineering5030066
|
[54] |
YANG Y C, HONG Q H, LEI K F, et al. The novel membrane-type micro-system to assess the bonus effect of physiological and physical stimuli on bone regeneration[J]. BioChip Journal, 2021, 15(3): 243-251 doi: 10.1007/s13206-021-00023-2
|
[55] |
PARK S H, SIM W Y, MIN B H, et al. Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation[J]. PLoS One, 2012, 7(9): e46689 doi: 10.1371/journal.pone.0046689
|
[56] |
MAULE J, WAINWRIGHT N, STEELE A, et al. Rapid culture-independent microbial analysis aboard the International Space Station (ISS)[J]. Astrobiology, 2009, 9(8): 759-775 doi: 10.1089/ast.2008.0319
|
[57] |
DANILO T. Tissue chips in spaces[EB/OL]. (2020-03-09) [2024-09-25]. https://ncats.nih.gov/tissuechip/projects/space
|
[58] |
PRZYSTUPSKI D, GÓRSKA A, MICHEL O, et al. Testing Lab-on-a-Chip technology for culturing human melanoma cells under simulated microgravity[J]. Cancers (Basel), 2021, 13(3): 402 doi: 10.3390/cancers13030402
|
[59] |
DU J, ZENG L, YU Z T, et al. Magnetic force-based microfluidic chip for plant seed levitation to simulate microgravity environment[C]//34th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Gainesville, FL, USA: IEEE, 2021
|
[60] |
WANG J S, MENG J, DING G G, et al. A novel microfluidic capture and monitoring method for assessing physiological damage of C. elegans under microgravity[J]. Electrophoresis, 2019, 40(6): 922-929 doi: 10.1002/elps.201800461
|
[61] |
BANG F B. A bacterial disease of Limulus polyphemus[J]. Bulletin of the Johns Hopkins Hospital, 1956, 98(5): 325-351
|
[62] |
MORRIS H C, DAMON M, MAULE J, et al. Rapid culture-independent microbial analysis aboard the International Space Station (ISS) stage two: quantifying three microbial biomarkers[J]. Astrobiology, 2012, 12(9): 830-840 doi: 10.1089/ast.2012.0863
|
[63] |
ZHENG W, HSU H, ZHONG M, et al. China's first-phase Mars Exploration Program: Yinghuo-1 orbiter[J]. Planetary and Space Science, 2013, 86: 155-159 doi: 10.1016/j.pss.2011.02.008
|
[64] |
SIMS M R, CULLEN D C, RIX C S, et al. Development status of the life marker chip instrument for ExoMars[J]. Planetary and Space Science, 2012, 72(1): 129-137 doi: 10.1016/j.pss.2012.04.007
|
[65] |
CHAN E. The Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor[R]. New York: NASA, 2015
|
[66] |
JONES-ISAAC K A, LIDBERG K A, YEUNG C K, et al. Development of a kidney microphysiological system hardware platform for microgravity studies[J]. Npj Microgravity, 2024, 10(1): 54 doi: 10.1038/s41526-024-00398-0
|
[67] |
LIDBERG K A, JONES-ISAAC K, YANG J D, et al. Modeling cellular responses to serum and vitamin D in microgravity using a human kidney microphysiological system[J]. Npj Microgravity, 2024, 10(1): 75 doi: 10.1038/s41526-024-00415-2
|
[68] |
DWIVEDI G, FLAMAN L, ALAYBEYOGLU B, et al. Effects of dexamethasone and IGF-1 on post-traumatic osteoarthritis-like catabolic changes in a human cartilage-bone-synovium microphysiological system in space and ground control tissues on earth[J]. Frontiers in Space Technologies, 2024, 5: 1358412 doi: 10.3389/frspt.2024.1358412
|
[69] |
GIZA S, MOJICA-SANTIAGO J A, PARAFATI M, et al. Microphysiological system for studying contractile differences in young, active, and old, sedentary adult derived skeletal muscle cells[J]. Aging Cell, 2022, 21(7): e13650 doi: 10.1111/acel.13650
|
[70] |
DI FILIPPO E S, CHIAPPALUPI S, FALONE S, et al. The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue[J]. Npj Microgravity, 2024, 10(1): 92 doi: 10.1038/s41526-024-00432-1
|
[71] |
PARAFATI M, GIZA S, SHENOY T S, et al. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight[J]. NPJ Microgravity, 2023, 9(1): 77 doi: 10.1038/s41526-023-00322-y
|
[72] |
SCHREPFER S. Microgravity as model for immunological senescence and its impact on tissue stem cells and regeneration[DB/OL]. (2017-06-15) [2024-09-25]. https://reporter.nih.gov /project-details/9403001
|
[73] |
WORTHEN G S. Lung host defense in microgravity[DB/OL]. (2017-06-15) [2024-09-25]. https://reporter.nih.gov/project-details/9403062
|
[74] |
HINOJOSA C D. Organs-on-chips as a platform for studying effects of microgravity on human physiology: Blood-brain barrier-chip in health and disease[DB/OL]. (2017-07-15) [2024-09-25]. https://reporter.nih.gov/project-details/9402972
|
[75] |
HINOJOSA C D. Organ-chips as a platform for studying effects of space on human enteric physiology: interactions of epithelial mucosa with sensory neurons and microbiome[DB/OL]. (2018-09-20) [2024-09-25]. https://reporter.nih.gov/project-details/9645490
|
[76] |
LOW L A, GIULIANOTTI M A. Tissue chips in space: modeling human diseases in microgravity[J]. Pharmaceutical Research, 2020, 37(1): 8 doi: 10.1007/s11095-019-2742-0
|
[77] |
HUGHSON R L, HELM A, DURANTE M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system[J]. Nature Reviews Cardiology, 2018, 15(3): 167-180 doi: 10.1038/nrcardio.2017.157
|
[78] |
WU J C. Effect of microgravity on drug responses using engineered heart tissues[DB/OL]. (2018-09-20) [2024-09-25]. https://reporter.nih.gov/project-details/9644885
|
[79] |
LAFLAMME M A, MURRY C E. Heart regeneration[J]. Nature, 2011, 473(7347): 326-335 doi: 10.1038/nature10147
|
[80] |
KIM D H. A human iPSC-based 3D microphysiological system for modeling cardiac dysfunction in microgravity[DB/OL]. (2018-09-20) [2024-09-25]. https://reporter.nih.gov/project-details/9644709
|
[81] |
赵莹莹, 李勤, 葛洋, 等. 微流控芯片在血液检验中的应用及航天医学应用前景分析[J]. 航天医学与医学工程, 2012, 25(4): 307-312
ZHAO Yingying, LI Qin, GE Yang, et al. Application of microfluidic chip in blood analysis and its prospects in space medicine[J]. Space Medicine :Times New Roman;">& Medical Engineering, 2012, 25(4): 307-312
|
[82] |
YANG C H, DENG Y L, REN H, et al. A multi-channel polymerase chain reaction lab-on-a-chip and its application in spaceflight experiment for the study of gene mutation[J]. Acta Astronautica, 2020, 166: 590-598 doi: 10.1016/j.actaastro.2018.11.049
|
[83] |
CHEN Y, PEI S Z, YAN L B, et al. Design and surface modification of a microfluidic chip for intercellular interactions research during space flight[J]. Acta Astronautica, 2020, 166: 619-627 doi: 10.1016/j.actaastro.2019.02.002
|
[84] |
LI Y R, LV X F, GENG L N, et al. A chip-based scientific payload technology for visual detection of proteins and its application in spaceflight[J]. Acta Astronautica, 2020, 170: 601-608 doi: 10.1016/j.actaastro.2020.02.037
|
[85] |
YANG Q Q, ZHONG R T, CHANG W B, et al. WormSpace μ-TAS enabling automated on-chip multi-strain culturing and multi-function imaging of Caenorhabditis elegans at the single-worm level on the China Space Station[J]. Lab on a Chip, 2024, 24(14): 3388-3402 doi: 10.1039/D4LC00210E
|
[86] |
WANG L, CHEN Z Z, XU Z Y, et al. A new approach of using organ-on-a-chip and fluid-structure interaction modeling to investigate biomechanical characteristics in tissue-engineered blood vessels[J]. Frontiers in Physiology, 2023, 14: 1210826 doi: 10.3389/fphys.2023.1210826
|