Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
QIAO Tong, TANG Kai, GUO Yuandong, HUANG Jinyin, LIU Jinlong, HUANG Yilong, MIAO Jianyin, LIN Guiping. Experimental Study of a Manifold Pin-fin Diamond Heat Sink for High Heat Flux Chips (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 449-457 doi: 10.11728/cjss2025.02.2024-0176
Citation: QIAO Tong, TANG Kai, GUO Yuandong, HUANG Jinyin, LIU Jinlong, HUANG Yilong, MIAO Jianyin, LIN Guiping. Experimental Study of a Manifold Pin-fin Diamond Heat Sink for High Heat Flux Chips (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 449-457 doi: 10.11728/cjss2025.02.2024-0176

Experimental Study of a Manifold Pin-fin Diamond Heat Sink for High Heat Flux Chips

doi: 10.11728/cjss2025.02.2024-0176 cstr: 32142.14.cjss.2024-0176
  • Received Date: 2024-11-30
  • Accepted Date: 2025-04-07
  • Rev Recd Date: 2025-03-10
  • Available Online: 2025-04-20
  • A manifold pin-fin microchannel diamond heat sink for high heat flux chips was designed and fabricated. Thermal performance of the heat sink in a pump-driven two-phase ammonia loop was investigated using a thermal test chip as a simulated heat source. Chip surface temperature of 102.5℃ with thermal resistance of 0.151 K·W–1 and pressure drop of 1.1 kPa under localized heat flow of 1510 W·cm–2 were obtained. The effects of inlet temperature, heat flux, and mass flow rate on thermal resistance and pressure drop of the heat sink were investigated, and it was found that the thermal resistance of the heat sink was minimized under higher inlet temperature conditions. Keeping all the other operating parameters consistent, the thermal resistance of the diamond manifold pin-fin microchannel radiator was 33.32% smaller and the pressure drop was 23.88% lower under 710 W·cm–2 heat flow conditions when compared with the expanded and contracted manifold microchannel radiator made of copper.

     

  • loading
  • [1]
    骆洋. 歧管式微通道内气液流动沸腾换热的数值模拟与实验研究[D]. 杭州: 浙江大学, 2021

    LUO Yang. Numerical and Experimental Investigation of Liquid-Vapor Two-Phase Flow Boiling in Manifold Micro-channel[D]. Hangzhou: Zhejiang University, 2021
    [2]
    AGOSTINI B, FABBRI M, PARK J E, et al. State of the art of high heat flux cooling technologies[J]. Heat Transfer Engineering, 2007, 28(4): 258-281 doi: 10.1080/01457630601117799
    [3]
    SARKAR S, GUPTA R, ROY T, et al. Review of jet impingement cooling of electronic devices: emerging role of surface engineering[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123888 doi: 10.1016/j.ijheatmasstransfer.2023.123888
    [4]
    CHENG W L, ZHANG W W, CHEN H, et al. Spray cooling and flash evaporation cooling: the current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628 doi: 10.1016/j.rser.2015.11.014
    [5]
    杜鹏, 周庆忠, 郑涵文, 等. 用于高密度集成微系统的微通道散热技术研究进展[J]. 微电子学与计算机, 2023, 40(1): 87-96

    DU Peng, ZHOU Qingzhong, ZHENG Hanwen, et a1. Research progress of microchannel cooling technology for high-density microsystems[J]. Microelectronics & Computer, 2023, 40(1): 87-96
    [6]
    高旭, 王学会, 雷刚, 等. 微重力流动沸腾气泡脱离机制[J]. 低温工程, 2015(2): 7-11,27 doi: 10.3969/j.issn.1000-6516.2015.02.002

    GAO Xu, WANG Xuehui, LEI Gang, et al. Bubble departure mechanism in microgravity flow boiling[J]. Cryogenics, 2015(2): 7-11,27 doi: 10.3969/j.issn.1000-6516.2015.02.002
    [7]
    HONG S H, WANG J X, GAO Z J, et al. Review on state-of-the-art research in pool and flow boiling under microgravity[J]. Experimental Thermal and Fluid Science, 2023, 144: 110848 doi: 10.1016/j.expthermflusci.2023.110848
    [8]
    LEE H, PARK I, MUDAWAR I, et al. Micro-channel evaporator for space applications–2. Assessment of predic-tive tools[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1231-1249 doi: 10.1016/j.ijheatmasstransfer.2014.06.008
    [9]
    HUANG Y P, YANG Q, ZHAO J Q, et al. Experimental study on flow boiling heat transfer characteristics of ammonia in microchannels[J]. Microgravity Science and Technology, 2020, 32(3): 477-492 doi: 10.1007/s12217-020-09786-z
    [10]
    VAN ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585(7824): 211-216 doi: 10.1038/s41586-020-2666-1
    [11]
    朱迅仪, 陈超伟, 张井志, 等. 歧管微通道热沉研究进展与展望[J]. 制冷学报, 2023, 44(4): 15-33 doi: 10.3969/j.issn.0253-4339.2023.04.015

    ZHU Xunyi, CHEN Chaowei, ZHANG Jingzhi, et al. Development and prospects of manifold microchannel heat sink research[J]. Journal of Refrigeration, 2023, 44(4): 15-33 doi: 10.3969/j.issn.0253-4339.2023.04.015
    [12]
    LIN Y H, LUO Y, LI W, et al. Single-phase and two-phase flow and heat transfer in microchannel heat sink with various manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121118 doi: 10.1016/j.ijheatmasstransfer.2021.121118
    [13]
    WU Z H, XIAO W, SONG B. Efficient thermal management of high-power electronics via jet-enhanced HU-type manifold microchannel[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125113 doi: 10.1016/j.ijheatmasstransfer.2023.125113
    [14]
    JUNG K W, KHARANGATE C R, LEE H, et al. Embedded cooling with 3D manifold for vehicle power electronics application: single-phase thermal-fluid performance[J]. International Journal of Heat and Mass Transfer, 2019, 130: 1108-1119 doi: 10.1016/j.ijheatmasstransfer.2018.10.108
    [15]
    PALKO J W, LEE H, ZHANG C, et al. Extreme two-phase cooling from laser-etched diamond and conformal, template-fabricated microporous copper[J]. Advanced Functional Materials, 2017, 27(45): 1703265 doi: 10.1002/adfm.201703265
    [16]
    TANG K, LIN G P, GUO Y D, et al. Thermal-hydraulic characterization of manifold microchannel heat sink with diverging channels and uniform heating[J]. Thermal Science and Engineering Progress, 2023, 46: 102235 doi: 10.1016/j.tsep.2023.102235
    [17]
    汤凯, 黄岩培, 郭元东, 等. 局部热点射流式微通道流动沸腾实验研究[J]. 工程热物理学报, 2024, 45(6): 1743-1748

    TANG Kai, HUANG Yanpei, GUO Yuandong, et al. Experimental study on localized hot spot jet impingement flow boiling[J]. Journal of Engineering Thermophysics, 2024, 45(6): 1743-1748
    [18]
    KALANI A, KANDLIKAR S G. Flow patterns and heat transfer mechanisms during flow boiling over open micro-channels in tapered manifold (OMM)[J]. International Journal of Heat and Mass Transfer, 2015, 89: 494-504 doi: 10.1016/j.ijheatmasstransfer.2015.05.070
    [19]
    杨涵. 微通道流动沸腾传热特性及可视化实验研究[D]. 大连: 大连理工大学, 2022

    YANG Han. Experimental Study of Flow Boiling Heat Transfer Characteristics and Visualization in Micro-Channels[D]. Dalian: Dalian University of Technology, 2022
    [20]
    HUANG Y P, MIAO J Y, NIU Z T, et al. Experimental investigation on heat transfer and pressure drop characteri-stics of confined jet impingement boiling on hybrid-structured surface[J]. Applied Thermal Engineering, 2023, 218: 119320 doi: 10.1016/j.applthermaleng.2022.119320
    [21]
    TANG K, HUANG Y P, LIN G P, et al. Thermal-hydraulic performance of ammonia in manifold microchannel heat sink[J]. Applied Thermal Engineering, 2023, 232: 121000 doi: 10.1016/j.applthermaleng.2023.121000
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article Views(165) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return