Citation: | QIAO Tong, TANG Kai, GUO Yuandong, HUANG Jinyin, LIU Jinlong, HUANG Yilong, MIAO Jianyin, LIN Guiping. Experimental Study of a Manifold Pin-fin Diamond Heat Sink for High Heat Flux Chips (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 449-457 doi: 10.11728/cjss2025.02.2024-0176 |
[1] |
骆洋. 歧管式微通道内气液流动沸腾换热的数值模拟与实验研究[D]. 杭州: 浙江大学, 2021
LUO Yang. Numerical and Experimental Investigation of Liquid-Vapor Two-Phase Flow Boiling in Manifold Micro-channel[D]. Hangzhou: Zhejiang University, 2021
|
[2] |
AGOSTINI B, FABBRI M, PARK J E, et al. State of the art of high heat flux cooling technologies[J]. Heat Transfer Engineering, 2007, 28(4): 258-281 doi: 10.1080/01457630601117799
|
[3] |
SARKAR S, GUPTA R, ROY T, et al. Review of jet impingement cooling of electronic devices: emerging role of surface engineering[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123888 doi: 10.1016/j.ijheatmasstransfer.2023.123888
|
[4] |
CHENG W L, ZHANG W W, CHEN H, et al. Spray cooling and flash evaporation cooling: the current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628 doi: 10.1016/j.rser.2015.11.014
|
[5] |
杜鹏, 周庆忠, 郑涵文, 等. 用于高密度集成微系统的微通道散热技术研究进展[J]. 微电子学与计算机, 2023, 40(1): 87-96
DU Peng, ZHOU Qingzhong, ZHENG Hanwen, et a1. Research progress of microchannel cooling technology for high-density microsystems[J]. Microelectronics & Computer, 2023, 40(1): 87-96
|
[6] |
高旭, 王学会, 雷刚, 等. 微重力流动沸腾气泡脱离机制[J]. 低温工程, 2015(2): 7-11,27 doi: 10.3969/j.issn.1000-6516.2015.02.002
GAO Xu, WANG Xuehui, LEI Gang, et al. Bubble departure mechanism in microgravity flow boiling[J]. Cryogenics, 2015(2): 7-11,27 doi: 10.3969/j.issn.1000-6516.2015.02.002
|
[7] |
HONG S H, WANG J X, GAO Z J, et al. Review on state-of-the-art research in pool and flow boiling under microgravity[J]. Experimental Thermal and Fluid Science, 2023, 144: 110848 doi: 10.1016/j.expthermflusci.2023.110848
|
[8] |
LEE H, PARK I, MUDAWAR I, et al. Micro-channel evaporator for space applications–2. Assessment of predic-tive tools[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1231-1249 doi: 10.1016/j.ijheatmasstransfer.2014.06.008
|
[9] |
HUANG Y P, YANG Q, ZHAO J Q, et al. Experimental study on flow boiling heat transfer characteristics of ammonia in microchannels[J]. Microgravity Science and Technology, 2020, 32(3): 477-492 doi: 10.1007/s12217-020-09786-z
|
[10] |
VAN ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585(7824): 211-216 doi: 10.1038/s41586-020-2666-1
|
[11] |
朱迅仪, 陈超伟, 张井志, 等. 歧管微通道热沉研究进展与展望[J]. 制冷学报, 2023, 44(4): 15-33 doi: 10.3969/j.issn.0253-4339.2023.04.015
ZHU Xunyi, CHEN Chaowei, ZHANG Jingzhi, et al. Development and prospects of manifold microchannel heat sink research[J]. Journal of Refrigeration, 2023, 44(4): 15-33 doi: 10.3969/j.issn.0253-4339.2023.04.015
|
[12] |
LIN Y H, LUO Y, LI W, et al. Single-phase and two-phase flow and heat transfer in microchannel heat sink with various manifold arrangements[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121118 doi: 10.1016/j.ijheatmasstransfer.2021.121118
|
[13] |
WU Z H, XIAO W, SONG B. Efficient thermal management of high-power electronics via jet-enhanced HU-type manifold microchannel[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125113 doi: 10.1016/j.ijheatmasstransfer.2023.125113
|
[14] |
JUNG K W, KHARANGATE C R, LEE H, et al. Embedded cooling with 3D manifold for vehicle power electronics application: single-phase thermal-fluid performance[J]. International Journal of Heat and Mass Transfer, 2019, 130: 1108-1119 doi: 10.1016/j.ijheatmasstransfer.2018.10.108
|
[15] |
PALKO J W, LEE H, ZHANG C, et al. Extreme two-phase cooling from laser-etched diamond and conformal, template-fabricated microporous copper[J]. Advanced Functional Materials, 2017, 27(45): 1703265 doi: 10.1002/adfm.201703265
|
[16] |
TANG K, LIN G P, GUO Y D, et al. Thermal-hydraulic characterization of manifold microchannel heat sink with diverging channels and uniform heating[J]. Thermal Science and Engineering Progress, 2023, 46: 102235 doi: 10.1016/j.tsep.2023.102235
|
[17] |
汤凯, 黄岩培, 郭元东, 等. 局部热点射流式微通道流动沸腾实验研究[J]. 工程热物理学报, 2024, 45(6): 1743-1748
TANG Kai, HUANG Yanpei, GUO Yuandong, et al. Experimental study on localized hot spot jet impingement flow boiling[J]. Journal of Engineering Thermophysics, 2024, 45(6): 1743-1748
|
[18] |
KALANI A, KANDLIKAR S G. Flow patterns and heat transfer mechanisms during flow boiling over open micro-channels in tapered manifold (OMM)[J]. International Journal of Heat and Mass Transfer, 2015, 89: 494-504 doi: 10.1016/j.ijheatmasstransfer.2015.05.070
|
[19] |
杨涵. 微通道流动沸腾传热特性及可视化实验研究[D]. 大连: 大连理工大学, 2022
YANG Han. Experimental Study of Flow Boiling Heat Transfer Characteristics and Visualization in Micro-Channels[D]. Dalian: Dalian University of Technology, 2022
|
[20] |
HUANG Y P, MIAO J Y, NIU Z T, et al. Experimental investigation on heat transfer and pressure drop characteri-stics of confined jet impingement boiling on hybrid-structured surface[J]. Applied Thermal Engineering, 2023, 218: 119320 doi: 10.1016/j.applthermaleng.2022.119320
|
[21] |
TANG K, HUANG Y P, LIN G P, et al. Thermal-hydraulic performance of ammonia in manifold microchannel heat sink[J]. Applied Thermal Engineering, 2023, 232: 121000 doi: 10.1016/j.applthermaleng.2023.121000
|