Turn off MathJax
Article Contents
LIN Yusha, LI Chen, SHI Mengxi, JI Xinlin. Observation and Analysis of Plasma Bubbles in Hainan During the Magnetic Storm in March 2015 (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-12 doi: 10.11728/cjss2026.01.2025-0004
Citation: LIN Yusha, LI Chen, SHI Mengxi, JI Xinlin. Observation and Analysis of Plasma Bubbles in Hainan During the Magnetic Storm in March 2015 (in Chinese). Chinese Journal of Space Science, 2026, 46(1): 1-12 doi: 10.11728/cjss2026.01.2025-0004

Observation and Analysis of Plasma Bubbles in Hainan During the Magnetic Storm in March 2015

doi: 10.11728/cjss2026.01.2025-0004 cstr: 32142.14.cjss.2025-0004
  • Received Date: 2025-01-06
  • Rev Recd Date: 2025-03-28
  • Available Online: 2025-05-09
  • This study utilizes the optical observation data from the 630 nm all-sky airglow imager, the data from the ionospheric digital ionosonde, and the data of the echo intensity of the Very High Frequency (VHF) coherent scatter radar at the Fuke Station in Hainan of the Meridian Project (19.5°N, 109.1°E). In combination with the geomagnetic horizontal component data from the Dalat Geomagnetic Station (11.9°N, 108.5°E; GL:2.5°) and the PHU Thuy Geomagnetic Station (21.0°N, 105.9°E; GL:11.5°), as well as the observations of the interplanetary magnetic field and solar wind speed from the ACE satellite, the study is carried out on the variations of the ionospheric plasma bubbles/irregularity structures over Hainan during the super geomagnetic storm in March 2015. The results show that the appearance of pre-midnight plasma bubbles and the uplift of the virtual height at the bottom of the ionosphere after sunset were observed both before and after the geomagnetic storm. However, the plasma bubbles observed after the end of the geomagnetic storm were of a fossil structure, which may be due to the fact that the ionospheric electric field during the occurrence period of the plasma bubbles on that day showed a westward polarity, which was not conducive to the development of the plasma bubbles. The uplift of the virtual height at the bottom of the ionosphere during the geomagnetic storm was significantly suppressed, and no plasma bubbles were observed at the Fuke station. The analysis of the variations of the interplanetary electric/magnetic field and the geomagnetic horizontal component shows that the Pre-Reversal Enhancement (PRE) electric field before the ionospheric reversal during the geomagnetic storm may have been successively suppressed by the over-shielding penetrating electric field with a westward polarity and the Disturbance Dynamo Electric Field (DDEF), resulting in a decrease in the Rayleigh-Taylor instability, which is not conducive to the development of the plasma bubble/ionospheric irregularity structures.

     

  • loading
  • [1]
    BOOKER H G, WELLS H W. Scattering of radio waves by the F‐region of the ionosphere[J]. Journal of Geophysical Research Atmospheric, 1938, 43(3): 249-256
    [2]
    WOODMAN R F, LA HOZ C. Radar observations of F region equatorial irregularities[J]. Journal of Geophysical Research, 1976, 81(31): 5447-5466 doi: 10.1029/JA081i031p05447
    [3]
    HAERENDEL G. Theory of Equatorial Spread F[R]. Munich: Max-Planck-institute für Physik und Astrophysik, Federal Republic of Germany, 1973
    [4]
    KELLEY M C. The Earth’s Ionosphere[M]. San Diego: Academic Press, 1989
    [5]
    CHOU M Y, YUE J, SASSI F, et al. Modeling the day-to-day variability of midnight equatorial plasma bubbles with SAMI3/SD-WACCM-X[J]. Journal of Geophysical Research: Space Physics, 2023, 128(5): e2023JA031585
    [6]
    HUANG F Q, LEI J H, XIONG C, et al. Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016[J]. Earth and Planetary Physics, 2021, 5(5): 416-426
    [7]
    ABDU M A. Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 75-76: 44-56
    [8]
    GONZÁLEZ G, WU Y J, GASQUE L C, et al. Effects of storm-time winds on ionospheric pre-midnight equatorial plasma bubbles over South America as observed by ICON and GOLD[J]. Journal of Geophysical Research: Space Physics, 2024, 129(10): e2024JA033111
    [9]
    MARTNIS C R, MENDILLO M J, AARONS J. Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A7): A07306 doi: 10.1029/2003ja010362
    [10]
    BASU S, BASU S, GROVES K M, et al. Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000[J]. Geophysical Research Letters, 2001, 28(18): 3577-3580 doi: 10.1029/2001GL013259
    [11]
    CHAKRABARTY D, SEKAR R, NARAYANAN R, et al. Effects of interplanetary electric field on the development of an equatorial spread F event[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A12): A12316 doi: 10.1029/2006ja011884
    [12]
    KELLEY M C, FEJER B G, GONZALES C A. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field[J]. Geophysical Research Letters, 1979, 6(4): 301-304 doi: 10.1029/GL006i004p00301
    [13]
    BLANC M, RICHMOND A D. The ionospheric disturbance dynamo[J]. Journal of Geophysical Research: Space Physics, 1980, 85(A4): 1669-1686 doi: 10.1029/JA085iA04p01669
    [14]
    ABDU M A, BATISTA I S, BERTONI F, et al. Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A5): A05321. doi: 10.1029/2011JA017174
    [15]
    TAHIR A, WU F L, SHAH M, et al. Multi-instrument observation of the ionospheric irregularities and disturbances during the 23-24 March 2023 geomagnetic storm[J]. Remote Sensing, 2024, 16(9): 1594 doi: 10.3390/rs16091594
    [16]
    ABDU M A, BATISTA I S, TAKAHASHI H, et al. Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: a case study in Brazilian sector[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A12): 1449 doi: 10.1029/2002ja009721
    [17]
    ABDU M A, KHERANI E A, BATISTA I S, et al. Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields[J]. Geophysical Research Letters, 2009, 36(19): L19103 doi: 10.1029/2009gl039919
    [18]
    WAN X, XIONG C, WANG H, et al. A statistical study on the climatology of the equatorial plasma depletions occurrence at topside ionosphere during geomagnetic disturbed periods[J]. Journal of Geophysical Research: Space Physics, 2019, 124(10): 8023-8038 doi: 10.1029/2019JA026926
    [19]
    LI G Z, NING B Q, WANG C, et al. Storm‐enhanced development of postsunset equatorial plasma bubbles around the meridian 120°E/60°W on 7-8 September 2017[J]. Journal of Geophysical Research: Space Physics, 2018, 123(9): 7985-7998 doi: 10.1029/2018JA025871
    [20]
    DABAS R S, LAKSHMI D R, REDDY B M. Effect of geomagnetic disturbances on the VHF nighttime scintillation activity at equatorial and low latitudes[J]. Radio Science, 1989, 24(4): 563-573 doi: 10.1029/RS024i004p00563
    [21]
    WANG G J, SHI J K, WANG X, et al. Seasonal variation of spread-F observed in Hainan[J]. Advances in Space Research, 2008, 41(4): 639-644 doi: 10.1016/j.asr.2007.04.077
    [22]
    WU Qi, YU Tao, LIN Zhaoxiang, et al. Night airglow observations to irregularities in the ionospheric F region over Hainan[J]. Chinese Journal of Geophysics, 2016, 59(1): 17-27 (吴祺, 余涛, 林兆祥, 等. 海南电离层F区不规则体的气辉观测[J]. 地球物理学报, 2016, 59(1): 17-27 doi: 10.6038/cjg20160103

    WU Qi, YU Tao, LIN Zhaoxiang, et al. Night airglow observations to irregularities in the ionospheric F region over Hainan[J]. Chinese Journal of Geophysics, 2016, 59(1): 17-27 doi: 10.6038/cjg20160103
    [23]
    JIN H, ZOU S S, CHEN G, et al. Formation and evolution of low‐latitude F region field‐aligned irregularities during the 7-8 September 2017 storm: Hainan coherent scatter phased array radar and digisonde observations[J]. Space Weather, 2018, 16(6): 648-659 doi: 10.1029/2018SW001865
    [24]
    PIMENTA A A, FAGUNDES P R, BITTENCOURT J A, et al. Ionospheric plasma bubble zonal drift: a methodology using OI 630 nm all-sky imaging systems[J]. Advances in Space Research, 2001, 27(6/7): 1219-1224 doi: 10.1016/s0273-1177(01)00201-0
    [25]
    SARUDIN I, HAMID N S A, ABDULLAH M, et al. Equatorial plasma bubble zonal drift velocity variations in response to season, local time, and solar activity across Southeast Asia[J]. Journal of Geophysical Research: Space Physics, 2020, 125(3): e2019JA027521 doi: 10.1029/2019JA027521
    [26]
    ZHAO Xiukuan, LI Guozhu, HU Lianhuan, et al. Solar and geomagnetic activity and seasonal dependence of global equatorial plasma bubbles based on GNSS observations[J]. Chinese Journal of Geophysics, 2023, 66(7): 2703-2712 (赵秀宽, 李国主, 胡连欢, 等. 基于GNSS观测的全球赤道等离子体泡对太阳和地磁活动及季节依赖特征[J]. 地球物理学报, 2023, 66(7): 2703-2712 doi: 10.6038/cjg2022Q0771

    ZHAO Xiukuan, LI Guozhu, HU Lianhuan, et al. Solar and geomagnetic activity and seasonal dependence of global equatorial plasma bubbles based on GNSS observations[J]. Chinese Journal of Geophysics, 2023, 66(7): 2703-2712 doi: 10.6038/cjg2022Q0771
    [27]
    KELLEY M C. The Earth's Ionosphere: Plasma Physics and Electrodynamics[M]. 2nd ed. San Diego: Academic Press, 2009
    [28]
    KIKUCHI T, HASHIMOTO K K, NOZAKI K. Penetration of magnetospheric electric fields to the equator during a geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A6): A06214 doi: 10.1029/2007ja012628
    [29]
    SULTAN P J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F[J]. Journal of Geophysical Research: Space Physics, 1996, 101(A12): 26875-26891. doi: 10.1029/96JA00682
    [30]
    SIDOROVA L N. Equatorial plasma bubbles: the influence of the meridional thermospheric winds[J]. Geomagnetism and Aeronomy, 2022, 62(3): 246-254. doi: 10.1134/S0016793222030161
    [31]
    SEKAR R, CHAKRABARTY D, SARKHEL S, et al. Identification of active fossil bubbles based on coordinated VHF radar and airglow measurements[J]. Annales Geophysicae, 2007, 25(10): 2099-2102 doi: 10.5194/angeo-25-2099-2007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article Views(298) PDF Downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return